skip to main content


Search for: All records

Creators/Authors contains: "Magain, Nicolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Peltigera globulata Miadl. & Magain, a new species in the P. ponojensis/monticola species complex of section Peltigera , is formally described. This clade was previously given the interim designation Peltigera sp. 17. It is found in sun-exposed and xeric habitats at high altitudes in Peru and Ecuador. Peltigera globulata can be easily recognized by its irregularly globulated margins covered mostly by thick, white pruina, somewhat resembling the sorediate thallus margins of P. soredians , another South American species from section Peltigera . The hypervariable region of ITS1 (ITS1-HR), which is in general highly variable among species of section Peltigera , does not have diagnostic value for species identification within the P. ponojensis/monticola complex. Nevertheless, no significant level of gene flow was detected among eight lineages representing a clade of putative species (including P. globulata ) within this complex. ITS sequences from the holotype specimens of P. monticola Vitik. (collected in 1979) and P. soredians Vitik. (collected in 1981) and lectotype specimens of P. antarctica C. W. Dodge (collected in 1941) and P. aubertii C. W. Dodge (collected in 1952) were successfully obtained through Sanger and Illumina metagenomic sequencing. BLAST results of these sequences revealed that the type specimen of P. monticola falls within the P. monticola/ponojensis 7 clade, which represents P. monticola s. str., and confirmed that the type specimen of P. aubertii falls within a clade identified previously as P. aubertii based on morphology. The ITS sequence from the type specimen of P. soredians , which superficially resembles P. globulata , confirms its placement in the P. rufescens clade. Finally, we discovered that the name P. antarctica was erroneously applied to a lineage in the P. ponojensis/monticola clade. The ITS sequence from the type specimen of P. antarctica represents a lineage within the P. rufescens clade, which is sister to the P. ponojensis/monticola clade. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    Prokaryotic genomes are often considered to be mosaics of genes that do not necessarily share the same evolutionary history due to widespread horizontal gene transfers (HGTs). Consequently, representing evolutionary relationships of prokaryotes as bifurcating trees has long been controversial. However, studies reporting conflicts among gene trees derived from phylogenomic data sets have shown that these conflicts can be the result of artifacts or evolutionary processes other than HGT, such as incomplete lineage sorting, low phylogenetic signal, and systematic errors due to substitution model misspecification. Here, we present the results of an extensive exploration of phylogenetic conflicts in the cyanobacterial order Nostocales, for which previous studies have inferred strongly supported conflicting relationships when using different concatenated phylogenomic data sets. We found that most of these conflicts are concentrated in deep clusters of short internodes of the Nostocales phylogeny, where the great majority of individual genes have low resolving power. We then inferred phylogenetic networks to detect HGT events while also accounting for incomplete lineage sorting. Our results indicate that most conflicts among gene trees are likely due to incomplete lineage sorting linked to an ancient rapid radiation, rather than to HGTs. Moreover, the short internodes of this radiation fit the expectations of the anomaly zone, i.e., a region of the tree parameter space where a species tree is discordant with its most likely gene tree. We demonstrated that concatenation of different sets of loci can recover up to 17 distinct and well-supported relationships within the putative anomaly zone of Nostocales, corresponding to the observed conflicts among well-supported trees based on concatenated data sets from previous studies. Our findings highlight the important role of rapid radiations as a potential cause of strongly conflicting phylogenetic relationships when using phylogenomic data sets of bacteria. We propose that polytomies may be the most appropriate phylogenetic representation of these rapid radiations that are part of anomaly zones, especially when all possible genomic markers have been considered to infer these phylogenies. [Anomaly zone; bacteria; horizontal gene transfer; incomplete lineage sorting; Nostocales; phylogenomic conflict; rapid radiation; Rhizonema.]

     
    more » « less
  3. Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is a primary source of fixed nitrogen in pristine, high-latitude ecosystems. On land, low molybdenum (Mo) availability has been shown to limit BNF by the most common form of nitrogenase (Nase), which requires Mo in its active site. Vanadium (V) and iron-only Nases have been suggested as viable alternatives to countering Mo limitation of BNF; however, field data supporting this long-standing hypothesis have been lacking. Here, we elucidate the contribution of vanadium nitrogenase (V-Nase) to BNF by cyanolichens across a 600-km latitudinal transect in eastern boreal forests of North America. Widespread V-Nase activity was detected (∼15–50% of total BNF rates), with most of the activity found in the northern part of the transect. We observed a 3-fold increase of V-Nase contribution during the 20-wk growing season. By including the contribution of V-Nase to BNF, estimates of new N input by cyanolichens increase by up to 30%. We find that variability in V-based BNF is strongly related to Mo availability, and we identify a Mo threshold of ∼250 ng·g lichen −1 for the onset of V-based BNF. Our results provide compelling ecosystem-scale evidence for the use of the V-Nase as a surrogate enzyme that contributes to BNF when Mo is limiting. Given widespread findings of terrestrial Mo limitation, including the carbon-rich circumboreal belt where global change is most rapid, additional consideration of V-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry. 
    more » « less
  4. Abstract

    Biotic specialization holds information about the assembly, evolution, and stability of biological communities. Partner availabilities can play an important role in enabling species interactions, where uneven partner availabilities can bias estimates of biotic specialization when using phylogenetic diversity indices. It is therefore important to account for partner availability when characterizing biotic specialization using phylogenies. We developed an index, phylogenetic structure of specialization (PSS), that avoids bias from uneven partner availabilities by uncoupling the null models for interaction frequency and phylogenetic distance. We incorporate the deviation between observed and random interaction frequencies as weights into the calculation of partner phylogenetic α‐diversity. To calculate the PSS index, we then compare observed partner phylogenetic α‐diversity to a null distribution generated by randomizing phylogenetic distances among the same number of partners. PSS quantifies the phylogenetic structure (i.e., clustered, overdispersed, or random) of the partners of a focal species. We show with simulations that the PSS index is not correlated with network properties, which allows comparisons across multiple systems. We also implemented PSS on empirical networks of host–parasite, avian seed‐dispersal, lichenized fungi–cyanobacteria, and hummingbird pollination interactions. Across these systems, a large proportion of taxa interact with phylogenetically random partners according to PSS, sometimes to a larger extent than detected with an existing method that does not account for partner availability. We also found that many taxa interact with phylogenetically clustered partners, while taxa with overdispersed partners were rare. We argue that species with phylogenetically overdispersed partners have often been misinterpreted as generalists when they should be considered specialists. Our results highlight the important role of randomness in shaping interaction networks, even in highly intimate symbioses, and provide a much‐needed quantitative framework to assess the role that evolutionary history and symbiotic specialization play in shaping patterns of biodiversity. PSS is available as an R package athttps://github.com/cjpardodelahoz/pss.

     
    more » « less
  5. Abstract

    Ecological interactions range from purely specialized to extremely generalized in nature. Recent research has showed very high levels of specialization in the cyanolichens involvingPeltigera(mycobionts) and theirNostocphotosynthetic partners (cyanobionts). Yet, little is known about the mechanisms contributing to the establishment and maintenance of such high specialization levels.

    Here, we characterized interactions betweenPeltigeraandNostocpartners at a global scale, using more than one thousand thalli. We used tools from network theory, community phylogenetics and biogeographical history reconstruction to evaluate how these symbiotic interactions may have evolved.

    After splitting the interaction matrix into modules of preferentially interacting partners, we evaluated how module membership might have evolved along the mycobionts’ phylogeny. We also teased apart the contributions of geographical overlap vs phylogeny in driving interaction establishment betweenPeltigeraandNostoctaxa.

    Module affiliation rarely evolves through the splitting of large ancestral modules. Instead, new modules appear to emerge independently, which is often associated with a fungal speciation event. We also found strong phylogenetic signal in these interactions, which suggests that partner switching is constrained by conserved traits. Therefore, it seems that a high rate of fungal diversification following a switch to a new cyanobiont can lead to the formation of large modules, with cyanobionts associating with multiple closely retatedPeltigeraspecies.

    Finally, when restricting our analyses toPeltigerasister species, the latter differed more through partner acquisition/loss than replacement (i.e., switching). This pattern vanishes as we look at sister species that have diverged longer ago. This suggests that fungal speciation may be accompanied by a stepwise process of (a) novel partner acquisition and (b) loss of the ancestral partner. This could explain the maintenance of high specialization levels in this symbiotic system where the transmission of the cyanobiont to the next generation is assumed to be predominantly horizontal.

    Synthesis.Overall, our study suggests that oscillation between generalization and ancestral partner loss may maintain high specialization within the lichen genusPeltigera, and that partner selection is not only driven by partners’ geographical overlap, but also by their phylogenetically conserved traits.

     
    more » « less
  6. Abstract Aim

    Phylogenetic diversification is a precursor to speciation, but the underlying patterns and processes are not well‐studied in lichens. Here we investigate what factors drive diversification in two tropical, morphologically similar macrolichens that occupy a similar range but differ in altitudinal and habitat preferences, testing for isolation by distance (IBD), environment (IBE), and fragmentation (IBF).

    Location

    Neotropics, Hawaii, Macaronesia.

    Taxon

    Sticta andina,S. scabrosa(Peltigeraceae).

    Methods

    We analysed 395 specimens from 135 localities, using the fungal ITS barcoding marker to assess phylogenetic diversification, through maximum likelihood tree reconstruction, TCS haplotype networks, and Tajima's D. Mantel tests were employed to detect structure in genetic vs. geographic, environmental, and fragmentation distances. Habitat preferences were quantitatively assessed by statistical analysis of locality‐based BIOclim variables.

    Results

    Sticta andinaexhibited high phenotypic variation and reticulate phylogenetic diversity across its range, whereas the phenotypically uniformS. scabrosacontained two main haplotypes, one unique to Hawaii.Sticta andinais restricted to well‐preserved andine forests and paramos, naturally fragmented habitats due to disruptive topology, whereasS. scabrosathrives in lowland to lower montane zones in exposed or disturbed microsites, representing a continuous habitat.Sticta scabrosashowed IBD only across its full range (separating the Hawaiian population) but not within continental Central and South America, there exhibiting a negative Tajima's D.Sticta andinadid not exhibit IBD but IBE at continental level and IBF in the northern Andes.

    Main conclusions

    Autecology, particularly preference for either low or high altitudes, indirectly drives phylogenetic diversification. Low diversification in the low altitude species,S. scabrosa, can be attributed to rapid expansion and effective gene flow across a more or less continuous niche due to disturbance tolerance. In contract, high diversification in the high altitude species,S. andina, can be explained by niche differentiation (IBE) and fragmentation (IBF) caused by the Andean uplift.

     
    more » « less